Algebra 2 - Chapter 2 Review

Multiple Choice
Identify the choice that best completes the statement or answers the question.

1. Make a mapping diagram for the relation.
\{(-3, 1), (0, 6), (3, 2), (5, -1)\}

 ![Mapping Diagram A]

 ![Mapping Diagram B]

2. Find the domain and range of the relation.

 ![Graph of Relation]

 a. domain: \{-3, -1.5, 1.5, 3\}; range: \{4, 3, 1.5\}
 b. domain: \{-3, -1.5, 0, 1.5, 3\}; range: \{4, 3, 1.5\}
 c. domain: \{4, 3, 1.5\}; range: \{-3, -1.5, 1.5, 3\}
 d. domain: \{4, 3, 1.5\}; range: \{-3, -1.5, 0, 1.5, 3\}

 Is the relation a function?

3. \{(14, 9), (15, 8), (8, 7), (1, 9), (15, 2)\}

 a. yes
 b. no
4. Use the vertical-line test to determine which graph represents a function.

a.
![Graph A](image1)

b.
![Graph B](image2)

c.
![Graph C](image3)

d.
![Graph D](image4)

5. For \(f(x) = -5x + 7 \), find \(f(2) \).

a. 9
b. -17
c. -3
d. 17

6. Specialty t-shirts are being sold online for $15 each, plus a one-time handling fee of $2.25. The total cost is a function of the number of t-shirts bought. What function rule models the cost of the t-shirts? Evaluate the function for 3 t-shirts.

a. 2.25\(t + 15\); \$21.75
b. 2.25\(t + 15\); \$47.25
c. 15\(t + 2.25\); \$47.25
d. 15\(t + 2.25\); \$21.75
Determine whether y varies directly with x. If so, find the constant of variation k and write the equation.

7.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

a. yes; $k = 3; y = 3x$
 b. yes; $k = 2.25; y = 2.25x$
 c. yes; $k = 2.33; y = 2.33x$
 d. no

Determine whether y varies directly with x. If so, find the constant of variation k.

8. $y + 2x = -19$

a. yes; 2
 b. yes; -2
 c. yes; 1
 d. no

Find the value of y for a given value of x, if y varies directly with x.

9. If $y = 3.24$ when $x = 5.4$, what is y when $x = 9.1$?

a. 15.17
 b. -15.17
 c. -5.46
 d. 5.46
What is the graph of each direct variation equation?

10. \(y = 2.5x \)

 a.

 b.

 c.

 d.

What is the slope of the line that passes through the given points?

11. (6, 2) and (7, 4)

 a. \(-2\) c. \(\frac{1}{2}\)

 b. \(-\frac{1}{2}\) d. 2
What is an equation of the line in slope intercept form?

12. \(m = \frac{1}{2} \) and the y-intercept is \((0, -5)\)

 a. \(y = \frac{1}{2}x - 5 \)
 b. \(y = -5x + \frac{1}{2} \)
 c. \(y = \frac{1}{2}x + 5 \)
 d. \(y = 5x - \frac{1}{2} \)

13. Write the equation in slope-intercept form. What are the slope and y-intercept?

 a. \(y = -2x - 4 \)
 b. \(y = -4x - 2 \)
 c. \(y = -4x + 2 \)
 d. \(y = 2x - 4 \)

14. \(-12x - 4y = 10\)

 a. \(y = -3x - \frac{5}{2} \); slope: \(-3\); y-intercept: \(-\frac{5}{2}\)
 b. \(y = -3x + \frac{5}{2} \); slope: \(3\); y-intercept: \(\frac{5}{2}\)
 c. \(y = 3x + \frac{5}{2} \); slope: \(\frac{5}{2}\); y-intercept: \(3\)
 d. \(y = 3x - \frac{5}{2} \); slope: \(3\); y-intercept: \(-\frac{5}{2}\)
Write an equation of the line, in point-slope form, that passes through the two given points.

15. points: $(-2, 10), (10, -14)$

 a. $y - 2 = \frac{1}{2}(x + 10)$
 b. $y - 10 = -\frac{1}{2}(x + 2)$
 c. $y - 10 = -2(x + 2)$
 d. $y - 2 = -2(x - 10)$

What is an equation of the line, in point-slope form, that passes through the given point and has the given slope?

16. point: $(6, -7)$; slope: 4

 a. $y - 7 = 4(x - 6)$
 b. $y + 7 = 4(x + 6)$
 c. $y + 7 = 4(x - 6)$
 d. $y - 7 = 4(x + 6)$

What is the equation of the given line in standard form? Use integer coefficients.

17. $y = \frac{5}{7}x - 12$

 a. $-5x + 7y = -12$
 b. $-5x - 7y = -84$
 c. $-5x + 7y = -84$
 d. $5x + 7y = -84$

What is the equation of the line in slope-intercept form?

18. the line parallel to $y = 8x - 8$ through $(5, 2)$

 a. $y = 8x - 38$
 b. $y = 8x - 42$
 c. $y = -\frac{1}{8}x - 38$
 d. $y = -8x - 38$

19. the line perpendicular to $y = \frac{1}{3}x + 5$ through $(2, 1)$

 a. $y = \frac{1}{3}x + 7$
 b. $y = -3x + 7$
 c. $y = 3x + 7$
 d. $y = -\frac{1}{3}x + 7$
20. How are the functions $y = x$ and $y = x + 5$ related? How are their graphs related?

a. Each output for $y = x + 5$ is 5 less than the corresponding output for $y = x$.
 The graph of $y = x + 5$ is the graph of $y = x$ translated down 5 units.

b. Each output for $y = x + 5$ is 5 more than the corresponding output for $y = x$.
 The graph of $y = x + 5$ is the graph of $y = x$ translated up 5 units.

c. Each output for $y = x + 5$ is 5 more than the corresponding output for $y = x$.
 The graph of $y = x + 5$ is the graph of $y = x$ translated down 5 units.

d. Each output for $y = x + 5$ is 5 less than the corresponding output for $y = x$.
 The graph of $y = x + 5$ is the graph of $y = x$ translated up 5 units.

21. If a function, $f(x)$ is shifted to the left four unit(s), what function represents the transformation?

a. $f(x - 4)$

b. $f(x) - 4$

c. $f(x + 4)$

d. $f(x) + 4$

Let $g(x)$ be the reflection of $f(x)$ in the x-axis. What is the function rule for $g(x)$?

22. Let $g(x)$ be the reflection of $f(x) = x^2 + 3$ in the x-axis. What is a function rule for $g(x)$?

a. $g(x) = -x^2 - 3$

b. $g(x) = -x^2 + 3$

c. $g(x) = x^2 - 3$

d. $g(x) = x^2 + 3$

Find the function rule for $g(x)$.

23. The function $f(x) = -6x$. The graph of $g(x)$ is $f(x)$ vertically stretched by a factor of 7 and reflected in the x-axis. What is the function rule for $g(x)$?

a. $g(x) = -\frac{6}{7}x$

b. $g(x) = 42x$

c. $g(x) = \frac{6}{7}x$

d. $g(x) = -42x$

What transformations change the graph of $f(x)$ to the graph of $g(x)$?

24. $f(x) = x^2$; $g(x) = (x + 5)^2 - 9$

a. The graph of $g(x)$ is the graph of $f(x)$ translated to the left 5 units and down 9 units.

b. The graph of $g(x)$ is the graph of $f(x)$ translated to the up 5 units and right 9 units.

c. The graph of $g(x)$ is the graph of $f(x)$ translated to the down 5 units and left 9 units.

d. The graph of $g(x)$ is the graph of $f(x)$ translated to the right 5 units and up 9 units.
What is the graph of the absolute value equation?

25. \(y = |x + 5| + 2 \)
 a.
 b.
 c.
 d.

26. Which of the following describes the translation of \(y = |x| \) to \(y = |x + 7| - 2 \)?
 a. \(y = |x| \) translated 2 units to the left and 7 units down
 b. \(y = |x| \) translated 2 units to the right and 7 units up
 c. \(y = |x| \) translated 7 units to the right and 7 units down
 d. \(y = |x| \) translated 7 units to the left and 2 units down
What is the graph of the absolute value function?

27. \[y = -\frac{1}{3}|x| \]
Compare each function with the parent function. Without graphing, what are the vertex, axis of symmetry, and transformations of the parent function?

28. \(y = | -4x + 5| + 4\)
 a. \((\frac{-5}{4}, 4); x = -\frac{5}{4}\);
 translated to the left \(\frac{5}{4}\) units and up 4 units.
 b. \((\frac{5}{4}, -4); x = \frac{5}{4}\);
 translated to the left \(\frac{5}{4}\) units and down 4 units.
 c. \((\frac{5}{4}, 4); x = \frac{5}{4}\);
 translated to the left \(\frac{5}{4}\) units, up 4 units, and reflected in the \(y\)-axis.
 d. \((\frac{-5}{4}, -4); x = -\frac{5}{4}\);
 translated to the right \(\frac{5}{4}\) units and up 4 units.

29. \(y = -| 4x + 5| - 2\)
 a. \((\frac{-5}{4}, 2); x = -\frac{5}{4}\);
 translated to the left \(\frac{5}{4}\) units and up 2 units.
 b. \((\frac{5}{4}, 2); x = \frac{5}{4}\);
 translated to the right \(\frac{5}{4}\) units and up 2 units, and reflected in the \(y\)-axis.
 c. \((\frac{-5}{4}, -2); x = -\frac{5}{4}\);
 translated to the left \(\frac{5}{4}\) units, up 2 units, and reflected in the \(x\)-axis.
 d. \((\frac{5}{4}, -2); x = \frac{5}{4}\);
 translated to the right \(\frac{5}{4}\) units and down 2 units.
What is the equation of the absolute value function?

30.

a. \(y = -4|x - 8| - 3 \)
b. \(y = -4|x - 8| + 3 \)
c. \(y = 4|x + 8| - 3 \)
d. \(y = -4|x + 8| - 3 \)
What is the graph of each inequality?

31. \(-4x + 4y < 4\)

a.

b.

c.

d.
32. \(3x \leq 2y - 7 \)

a.

b.

c.

d.
What is the graph of each absolute value inequality?

33. \(y > |x - 1| + 3 \)

 a.

 b.

 c.

 d.
34. \(|x + 5| \geq y - 2\)

a.

b.

c.

d.
Write an inequality for the graph.

35.

a. \(y \leq |x - 3| + 5 \)

b. \(y \leq |x + 3| + 5 \)

c. \(y \geq |x + 3| + 5 \)

d. \(y \leq |x + 3| - 5 \)
MULTIPLE CHOICE

1. **ANS:** A **PTS:** 1 **DIF:** L2 **REF:** 2-1 Relations and Functions
 OBJ: 2-1.1 To graph relations
 NAT: CC F.IF.1| CC F.IF.2| A.1.g| A.1.i| A.2.b| A.3.f
 TOP: 2-1 Problem 1 Representing a Relation
 KEY: relation

2. **ANS:** B **PTS:** 1 **DIF:** L2 **REF:** 2-1 Relations and Functions
 OBJ: 2-1.1 To graph relations
 NAT: CC F.IF.1| CC F.IF.2| A.1.g| A.1.i| A.2.b| A.3.f
 TOP: 2-1 Problem 2 Finding Domain and Range
 KEY: domain | range | relation

3. **ANS:** B **PTS:** 1 **DIF:** L2 **REF:** 2-1 Relations and Functions
 OBJ: 2-1.2 To identify functions
 NAT: CC F.IF.1| CC F.IF.2| A.1.g| A.1.i| A.2.b| A.3.f
 TOP: 2-1 Problem 3 Identifying Functions
 KEY: function | relation

4. **ANS:** B **PTS:** 1 **DIF:** L2 **REF:** 2-1 Relations and Functions
 OBJ: 2-1.2 To identify functions
 NAT: CC F.IF.1| CC F.IF.2| A.1.g| A.1.i| A.2.b| A.3.f
 TOP: 2-1 Problem 4 Using the Vertical-Line Test
 KEY: vertical-line test | function

5. **ANS:** C **PTS:** 1 **DIF:** L2 **REF:** 2-1 Relations and Functions
 OBJ: 2-1.2 To identify functions
 NAT: CC F.IF.1| CC F.IF.2| A.1.g| A.1.i| A.2.b| A.3.f
 TOP: 2-1 Problem 5 Using Function Notation
 KEY: function notation

6. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 2-2 Direct Variation
 OBJ: 2-2.1 To write and interpret direct variation equations
 NAT: CC A.CED.2| CC F.IF.1| CC F.BF.1| N.4.c| A.2.b
 TOP: 2-2 Problem 1 Identifying Direct Variation from Tables
 KEY: constant of variation | direct variation

7. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 2-2 Direct Variation
 OBJ: 2-2.1 To write and interpret direct variation equations
 NAT: CC A.CED.2| CC F.IF.1| CC F.BF.1| N.4.c| A.2.b
 TOP: 2-2 Problem 2 Identifying Direct Variation from Equations
 KEY: constant of variation | direct variation

8. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 2-2 Direct Variation
 OBJ: 2-2.1 To write and interpret direct variation equations
 NAT: CC A.CED.2| CC F.IF.1| CC F.BF.1| N.4.c| A.2.b
 TOP: 2-2 Problem 3 Using a Proportion to Solve a Direct Variation
 KEY: direct variation

9. **ANS:** D **PTS:** 1 **DIF:** L4 **REF:** 2-2 Direct Variation
 OBJ: 2-2.1 To write and interpret direct variation equations
 NAT: CC A.CED.2| CC F.IF.1| CC F.BF.1| N.4.c| A.2.b
 TOP: 2-2 Problem 5 Graphing Direct Variation Equations
 KEY: direct variation

10. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 2-2 Direct Variation
 OBJ: 2-2.1 To write and interpret direct variation equations
 NAT: CC A.CED.2| CC F.IF.1| CC F.BF.1| N.4.c| A.2.b
 TOP: 2-2 Problem 5 Graphing Direct Variation Equations
 KEY: direct variation

11. **ANS:** D **PTS:** 1 **DIF:** L2 **REF:** 2-3 Linear Functions and Slope-Intercept Form
 OBJ: 2-3.1 To graph linear equations
 NAT: CC A.CED.2| CC F.IF.4| CC F.IF.7| G.4.d| A.1.b| A.2.b
 TOP: 2-3 Problem 1 Finding Slope
 KEY: slope
12. ANS: A PTS: 1 DIF: L3
REF: 2-3 Linear Functions and Slope-Intercept Form
OBJ: 2-3.2 To write equations of lines
TOP: 2-3 Problem 2 Writing Linear Equations
NAT: CC A.CED.2| CC F.IF.4| CC F.IF.7| G.4.d| A.1.b| A.2.b
KEY: linear equation | slope-intercept form | slope | y-intercept

13. ANS: C PTS: 1 DIF: L3
REF: 2-3 Linear Functions and Slope-Intercept Form
OBJ: 2-3.2 To write equations of lines
TOP: 2-3 Problem 2 Writing Linear Equations
NAT: CC A.CED.2| CC F.IF.4| CC F.IF.7| G.4.d| A.1.b| A.2.b
KEY: linear equation | slope-intercept form | slope | y-intercept

14. ANS: A PTS: 1 DIF: L3
REF: 2-3 Linear Functions and Slope-Intercept Form
OBJ: 2-3.2 To write equations of lines
TOP: 2-3 Problem 3 Writing Equations in Slope-Intercept Form
NAT: CC A.CED.2| CC F.IF.4| CC F.IF.7| G.4.d| A.1.b| A.2.b
KEY: linear equation | slope-intercept form | slope | y-intercept

15. ANS: C PTS: 1 DIF: L2
REF: 2-4 More About Linear Equations
OBJ: 2-4.1 To write an equation of a line given its slope and a point on the line
TOP: 2-4 Problem 2 Writing an Equation Given Two Points
NAT: CC A.CED.2| CC F.IF.7| CC F.IF.8| CC F.IF.9| G.4.d| A.2.a| A.2.b
KEY: point-slope form

16. ANS: C PTS: 1 DIF: L2
REF: 2-4 More About Linear Equations
OBJ: 2-4.1 To write an equation of a line given its slope and a point on the line
TOP: 2-4 Problem 1 Writing an Equation Given a Point and a Slope
NAT: CC A.CED.2| CC F.IF.7| CC F.IF.8| CC F.IF.9| G.4.d| A.2.a| A.2.b
KEY: point-slope form

17. ANS: C PTS: 1 DIF: L2
REF: 2-4 More About Linear Equations
OBJ: 2-4.1 To write an equation of a line given its slope and a point on the line
TOP: 2-4 Problem 3 Writing an Equation in Standard Form
NAT: CC A.CED.2| CC F.IF.7| CC F.IF.8| CC F.IF.9| G.4.d| A.2.a| A.2.b
KEY: standard form of a linear equation

18. ANS: A PTS: 1 DIF: L3
REF: 2-4 More About Linear Equations
OBJ: 2-4.1 To write an equation of a line given its slope and a point on the line
TOP: 2-4 Problem 6 Writing Equations of Parallel and Perpendicular Lines
NAT: CC A.CED.2| CC F.IF.7| CC F.IF.8| CC F.IF.9| G.4.d| A.2.a| A.2.b
KEY: parallel lines

19. ANS: B PTS: 1 DIF: L3
REF: 2-4 More About Linear Equations
OBJ: 2-4.1 To write an equation of a line given its slope and a point on the line
TOP: 2-4 Problem 6 Writing Equations of Parallel and Perpendicular Lines
NAT: CC A.CED.2| CC F.IF.7| CC F.IF.8| CC F.IF.9| G.4.d| A.2.a| A.2.b
KEY: perpendicular lines

20. ANS: B PTS: 1 DIF: L2
REF: 2-6 Families of Functions
OBJ: 2-6.1 To analyze transformations of functions
TOP: 2-6 Problem 1 Vertical Translation
NAT: CC F.IF.7| CC F.BF.3| G.2.c| G.4.d| A.1.e| A.1.h| A.2.b
KEY: translation | effect of a constant k on f(x); f(x) + k

21. ANS: C PTS: 1 DIF: L2
REF: 2-6 Families of Functions
OBJ: 2-6.1 To analyze transformations of functions
TOP: 2-6 Problem 2 Horizontal Translation
NAT: CC F.IF.7| CC F.BF.3| G.2.c| G.4.d| A.1.e| A.1.h| A.2.b
KEY: translation | transformation
22. ANS: A
PTS: 1
DIF: L3
REF: 2-6 Families of Functions

OBJ: 2-6.1 To analyze transformations of functions

NAT: CC F.IF.7| CC F.BF.3| G.2.c| G.4.d| A.1.e| A.1.h| A.2.b

TOP: 2-6 Problem 3 Reflecting a Function Algebraically
KEY: transformation | reflection

23. ANS: B
PTS: 1
DIF: L3
REF: 2-6 Families of Functions

OBJ: 2-6.1 To analyze transformations of functions

NAT: CC F.IF.7| CC F.BF.3| G.2.c| G.4.d| A.1.e| A.1.h| A.2.b

TOP: 2-6 Problem 5 Combining Transformations
KEY: transformation | reflection | vertical stretch | vertical compression

24. ANS: A
PTS: 1
DIF: L3
REF: 2-6 Families of Functions

OBJ: 2-6.1 To analyze transformations of functions

NAT: CC F.IF.7| CC F.BF.3| G.2.c| G.4.d| A.1.e| A.1.h| A.2.b

TOP: 2-6 Problem 5 Combining Transformations
KEY: transformation | translation | vertical shift | horizontal shift

25. ANS: A
PTS: 1
DIF: L3
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 2 Combining Translations
KEY: absolute value function | piecewise function

26. ANS: D
PTS: 1
DIF: L3
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 2 Combining Translations
KEY: effect of a constant k on f(x); f(x+k) and f(x) + k

27. ANS: D
PTS: 1
DIF: L2
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 3 Vertical Stretch and Compression
KEY: absolute value function | piecewise function

28. ANS: C
PTS: 1
DIF: L3
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 4 Identifying Transformations
KEY: absolute value function | axis of symmetry | vertex

29. ANS: C
PTS: 1
DIF: L3
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 4 Identifying Transformations
KEY: absolute value function | axis of symmetry | vertex

30. ANS: D
PTS: 1
DIF: L3
REF: 2-7 Absolute Value Functions and Graphs

OBJ: 2-7.1 To graph absolute value functions

NAT: CC F.IF.7| CC F.IF.7.b| CC F.BF.3| N.1.g| G.2.c| G.4.d| A.2.b| A.2.d

TOP: 2-7 Problem 5 Writing and Absolute Value Function
KEY: absolute value function | piecewise function
31. **ANS:** B **PTS:** 1 **DIF:** L2
OBJ: 2-8.1 To graph two-variable inequalities
TOP: 2-8 Problem 1 Graphing Linear Inequalities
KEY: linear inequality | boundary | half-plane | test point
REF: 2-8 Two-Variable Inequalities
NAT: CC A.CED.2| CC F.IF.7.b

32. **ANS:** B **PTS:** 1 **DIF:** L2
OBJ: 2-8.1 To graph two-variable inequalities
TOP: 2-8 Problem 1 Graphing Linear Inequalities
KEY: linear inequality | boundary | half-plane | test point
REF: 2-8 Two-Variable Inequalities
NAT: CC A.CED.2| CC F.IF.7.b

33. **ANS:** C **PTS:** 1 **DIF:** L2
OBJ: 2-8.1 To graph two-variable inequalities
TOP: 2-8 Problem 3 Graphing an Absolute Value Inequality
REF: 2-8 Two-Variable Inequalities
NAT: CC A.CED.2| CC F.IF.7.b

34. **ANS:** A **PTS:** 1 **DIF:** L3
OBJ: 2-8.1 To graph two-variable inequalities
TOP: 2-8 Problem 3 Graphing an Absolute Value Inequality
REF: 2-8 Two-Variable Inequalities
NAT: CC A.CED.2| CC F.IF.7.b

35. **ANS:** B **PTS:** 1 **DIF:** L2
OBJ: 2-8.1 To graph two-variable inequalities
TOP: 2-8 Problem 4 Writing an Inequality Based on a Graph
REF: 2-8 Two-Variable Inequalities
NAT: CC A.CED.2| CC F.IF.7.b